

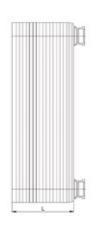
VacInox | Brazed Plate Heat Exchangers

FOR DEMANDING MEDIA AT ELEVATED PRESSURE

DESIGN & FUNCTION

VacInox, the solution for highest requirements for potable water applications and industrial processes.

VacInox is our new, unique and revolutionary technology for a solid/resistant connection of stainless steel plates. It enables a compact design and a maximal corrosion resistance.


To meet the increased demands in terms of high temperatures and pressures up to 35 bar/508 psi a special brazing filler free of non-ferrous metals is used.

The GVH-Series unifies the compact design and economy of a brazed plate heat exchanger with the utility of a shell-and-tube heat exchanger. VacInox is the solution for applications with aggressive media and high pressures.

ADVANTAGES

- ► FREE OF NON-FERROUS METALS
- **▶ HIGH CORROSION RESISTANCE**
- **► HIGH PRESSURE RESISTANCE**
- ► COMPACT DESIGN
- **▶ LOW INVESTMENT COSTS**

ALWAYS A SUITABLE SOLUTION AT HAND

The brazed plate heat exchangers from

Kelvion offer tailor-made solutions for the widest range of application.

We configure the most economically favorable model for you from the wide range of available sizes and the numerous optional features. We adapt this with individually positioned connections to meet your specific requirements.

APPLICATION EXAMPLES:

- Potable water heating
- Evaporator and condenser for Ammonia systems
- ▶ Laser cooling
- ▶ District heating

Туре	Pressure	Dimensions				L-Dimension*	Weight*	Volume	Max. number of plates
	bar	A [mm]	B [mm]	C [mm]	D [mm]	[mm]	[kg]	(Litre/ Channel)	
GVH 100M	35/30	74	204	40	170	L=10,20+2,23xN	W=0,70+0,050xN	0.025	50
GVH 108H	25	74	204	40	170	L=8,20+1,00×N	W=0,55+0,035xN	0.010	50
GVH 200H	25	90	231	43	182	L=12,20+2,24xN	W=0,90+0,060xN	0.030	50
GVH 220H	25	90	328	43	279	L=12,30+2,25xN	W=1,20+0,090xN	0.046	50
GVH 228 H	25	90	328	43	279	L=11,20+1,00xN	W=1,15+0,065xN	0.019	50
GVH 240H	25	90	464	43	415	L=12,20+2,24xN	W=1,65+0,130×N	0.070	50
GVH 300H	25	124	173	73	120	L=14,20+2,24xN	W=1,45+0,060xN	0.030	50
GVH 400H	25	124	335	73	281	L=12,30+2,25xN	W=1,60+0,120xN	0.065	100
GVH 500H	25	124	532	73	478	L=14,30+2,28xN	W=4,25+0,220xN	0.100	100
GVH 700L	27	271	532	200	460	L=15,70+2,34xN	W=12,20+0,530xN	0.230	150
GVH 700M	27	271	532	200	460	L=15,70+2,34xN	W=12,20+0,530xN	0.230	150
GVH 800H	25	271	532	161	421	L=16,10+2,34xN	W=10,70+0,500xN	0.221	200
GVH 1000H	20	386	875	237	723	L=20,40+2,33xN	W=28,05+1,150xN	0,600	200
Also available as an advanced evaporator with a special "Delta Injection™" distribution system for the refrigerant inlet.									
GVH 400H-AE	25	124	335	73	281	L=12,30+2,25xN	W=1,60+0,120×N	0.065	100
GVH 500H-AE	25	124	532	73	478	L=14,30+2,28xN	W=4,25+0,220xN	0.100	100
GVH 700M-AE	27	271	532	200	460	L=15,70+2,34xN	W=12,20+0,530xN	0.230	150
GVH 800H-AE	25	271	532	161	421	L=16,10+2,34×N	W=10,70+0,500xN	0.221	200

*N = number of plates

SPECIFICATIONS

- ▶ Plate Material: Stainless steel AISI 316L / 1.4404
- ► Brazing Material: VacInox

FEATURES

- ▶ Delta Injection[™] (model 400, 500, 700M, 800)
- ► Full-Flow SystemTM (model 100, 200, 220, 240, 300, 400, 500)
- ► Safety ChamberTM (model 108, 228, 700, 800, 1000)

PERFORMANCE LIMITS

- ▶ Working temperature: -196°C to +200°C / -321°F to +392°F
- ▶ Working pressure: up to 35 bar / 508 psi

APPROVAL

- ▶ PED (CE)
- ► ASME VIII-1
- ▶ UL

We need following information to select your optimum heat exchanger

- ► Required temperature range
- ▶ Flow rates or required heat load
- ► Maximal permitted pressure drop
- ► Required working conditions

The specifications contained in this brochure are intended only to serve the non-binding description of our products and services and are not subject to guarantee. Binding specifications, especially pertaining to performance data and suitability for specific operating purposes, are dependent upon the individual circumstances at the operation location and can, therefore, only be made in terms of precise requests.